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ABSTRACT 
In many power system problems, the use of optimization techniques has been important to reduce costs and losses of the 
system. One of the most important points in process is the computational cost to find the best solution. Sometimes, this cost 
may comprise the use of a technique to solve a problem. Number of constraints, number of variables and poor convergence 
speed are some examples of computational cost. This paper presents a development using fuzzy optimization process. This 
paper starts with theoretical aspects of the fuzzy optimization process and then, an example using power system energy saving 
is presented. 
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INITIAL CONSIDERATIONS 

In the real world, it is not an easy task to 

find a solution of a given problem because many 

constraints and limitations must be taken into 

account during this process. Usually, only the 

most important constraints and limitations are 

chosen to be used during the solution search 

process. Another problem is that the solution can 

be not unique and it depends directly on the 

weight of each constraint. Hence, many 

optimization processes have been developed in 

the last decades to achieve the best solution in this 

search process. In addition, the computational 

problems are related to hardware processor speed, 

memory capacity and numerical techniques. 

However, the highly fast evolution of the 

computational world (hardware and software) 

allows optimization techniques that could not be 

used before to solve a specific problem, to be 

applied successfully now. Specifically for power 

system problems, decomposition techniques, 

partitioning techniques and parallel processing are 

examples of recent evolution of computational 

techniques. 

In many power system problems, the use of 

optimization techniques has been important to 

reduce costs and losses of the system. Unit 
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commitment, economic dispatching, and optimal 

power flow are some areas where these 

techniques have been extensively used. For 

example, minimization of active power losses is 

one of the biggest challenges for power control 

operators. The achievement of this goal in real-

time is a critical task. A possible solution for this 

problem is to use the Dantzig and Wolfe 

decomposition algorithm to partitioning the 

power system in many subsystems according to a 

geographic basis. The optimization process is 

applied to these subsystems, and the constraints 

are limited to local constraints and coupling bus 

constraints. 

An optimization process can be defined as a 

maximization (or minimization) of an objective 

function, f(x), subject to constraints of the 

problem, g(x). These constraints define a feasible 

region R, i.e., a region that contains possible 

solutions of the problem. Two popular techniques 

have been developed for optimization process; 

they are linear programming and quadratic 

programming. Examples of these techniques, for 

two variables x1 and x2, are shown in Figure 1, 

where there are 4 linear inequality constraints, 

gi(x), that define the feasible region R, and the 

optimal solution is denoted by x*. 

It can be verified that in the linear 

programming the optimal solution occurs always 

at an extreme point (corner point, i.e., two active 

constraints) of the feasible region; while in the 

quadratic programming this solution can be 

located over only one of the constraints (one 

active constraint), i.e., this constraint is tangent to 

the objective function f(x). 
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Fig.1 - Example of Techniques: (a) Linear 

Programming and (b) Quadratic Programming. 

The two major drawbacks of these current 

optimization methods are: speed/convergence 

problems and correct representation of 

constraints. Usually, methods with fast speed 

present poor convergence, while slower methods 

have less convergence problems. In one hand, for 

example, Newton-Raphson (or other parallel 
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tangent methods) presents a very good answer 

when the starting point is near the solution point; 

however, this method performance can be very 

dependent on the shape of the involved functions. 

On the other hand, bisection methods (e.g., 

Fibonacci, cubic, and quadratic searches) are 

slower than tangent methods but they are more 

reliable. Hybrid system schemes have been 

proposed. Initially, the procedure starts with a 

bisection method until the vicinity of the optimal 

point; then, the procedure changes the method to 

a parallel tangent method. 

The second drawback, correct 

representation of constraints, is related to the 

difficulty to evaluate the correct value to be 

incorporated in the constraint equations. 

Sometimes, these constraints are not well defined 

by crisp functions, and the use of fuzzy values is 

recommended. Many fuzzy optimization methods 

have been proposed in the literature, where they 

can be classified according to the introduction of 

fuzzy set theory in: (a) representation of the 

constraints, and (b) solution method. A typical 

fuzzy optimization process is described in the 

next sections. 

The main applications of fuzzy optimization 

in power system problems are: expansion 

planning [1-5], maintenance scheduling [6,7], unit 

commitment [8], multi-objective coordination [9-

11], and optimal power flow [12-14]. 

FUZZY OPTIMIZATION BY 

PSEUDOGOAL FUNCTION 

Description of the Process 

Usually, optimization problems with a 

single-real variable are solved using bisection 

methods, where the main idea is to reduce an 

initial interval until a required minimum. 

Differently from the classical optimization 

methods, the main idea in fuzzy optimization is to 

optimize objective function and constraints, 

simultaneously. In order to determine the optimal 

point (solution point), both objective function and 

constraints must be characterize by membership 

functions and they must be linked by a linguistic 

conjunction: “and” (for maximization) and “or” 

(for minimization). 

The fuzzy optimization by pseudogoal was 

proposed by Bellman and Zadeh [21] and the 

main idea is to satisfy a fuzzy objective function 

and fuzzy constraints that receive the same 

treatment, i.e., there is no difference among the 

objective function and constraints.  The first step 

is a fuzzification process of the objective 

function, this procedure converts the objective 

function f(xj ) into a pseudogoal F(xj ) by the 

following fuzzification process 

µF

f
( )

( )
x

x I
S - Ij

j=
−  
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where S and I are the maximum and minimum 

possible values in the feasible interval for the 

function f(xj), respectively. 

The constraints may also receive the same 

fuzzification process as above, or they are 

previously defined as a membership function. In 

the latter possibility, this definition can represent 

an expertise (or a linguistic value). For example, 

using a crisp function, a possible constraint can be 

x ≤ 3. The same constraint can be expressed as 

“the good value is equal or less than 3”. A 

possible complement of this statement may be “it 

is also acceptable a value not so larger than 3”. A 

possible membership function to represent this 

linguistic value can be 

 

C a
k( )x

for x  3

x
for x >  3=

≤

+






1  

 

where k represents how acceptable is the value 

larger than 3. If the value of k is small (usually, 

k < 1), only values very close to 3 are acceptable; 

otherwise (k >1), k can represent bigger values for 

the membership functions. Figure 2 presents an 

example of these values. The constant a is only a 

parameter for level adjustment and it is used to 

turn the membership function to a continuous one. 

 

x is quite close to 3

x is close to 3

X is very close to 3

3 x

µ(x)

1
k < 1

k  =1

k  > 1

 
Fig.2 - Possible Membership Functions for a 

Generic Constraints. 

Another usual procedure is the use of fuzzy 

numbers to define constraints. In classical 

optimization, intervals define the region to be 

explored. In fuzzy optimization, this region can 

be expressed using fuzzy numbers. An example of 

this procedure is shown in Figure 3, where δ1 e δ2 

can be defined as the fulfillment (or relaxation) of 

the constraint. 

x2 + δ2

µ(x)

x1 x2x1 - δ1

Classical
Fuzzy

 
 

Fig.3 - Classical and Fuzzy Intervals: [x1,x2] and 

[x1 + δ1, x2 + δ2], respectively. 
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After the fuzzification process, the 

membership of the optimal function can be found 

by the aggregation of all constraints and the 

pseudogoal. In the computation of the fuzzy 

maximum function, all membership functions are 

initially merged by the conjunction “and” 

(intersection of all function, operator: minimum) 

and then the optimal value (solution) x* is 

computed by the operator maximum (i.e., the 

maximum-minimum value of the membership 

function). This procedure can be presented by the 

following sequence, where G(x) represents the 

decision function, and µG(x) is its associated 

membership, 
µG min C F( ) ( , )x =  

x x* = max G{ ( )µ }

}

 

In fact, this last operation (maximum) is a 

defuzzification process, i.e., x* is the optimal 

value in the original scale. 

In the same way, for the fuzzy minimum 

function, a sequence can also be structured. 

Initially, all membership functions are merged by 

the conjunction “or” (it means the union of all 

membership functions, operator maximum) and 

then the optimal value x* is computed by the 

operator minimum, as defined by next 
µG max C F( ) ( , )x =  

x x* = min G{ ( )µ  

In the fuzzy optimization process, it is 

possible to incorporate weights for each constraint 

and pseudogoal. These weights can represent 

linguistic hedges in order to modify a 

membership function (as a linguistic value). Also, 

other operators (than maximum and minimum) 

can be used to define relations among constraints 

and pseudogoal. Sometimes, composite operators 

must be used for a better definition of the 

relations [22]. 

Numerical Example 

This section presents a numerical 

illustrative example on the use of fuzzy 

optimization for one-single variable. Let be an 

objective function that represents the following 

linguistic statement “x must be around 4” and the 

two constraints: C1 = “x must be equal or greater 

than 2 and equal or less than 6”, and C2 = “a good 

value for x is equal or less than 3 and an 

acceptable value is not much greater”. In this 

example, the former constraint is a crisp function, 

while the latter constraint is a fuzzy value. Let’s 

consider the example below. 

 maximize f(x) = 10 -x - 25/x² 

 

 subject to 

  C1(x) =
0 for x < 2
1 for 2 x 6
0 for x > 6

≤ ≤









 C2

1
1
3

2( )x
for x  3

x
for x >  3=

≤

+





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The initial step is to compute the pseudogoal 

F(x) using the minimum and maximum values of 

f(x): 

 

f(x=2) = I = 1.75 (minimum value in the interval 

[2,6]) 

f(x=3.68) = S = 4.47 (maximum value in the 

interval [2,6]) 

 

Thus, 

F
f

( )
( )

.
.

x
x I

S- I
x

2.72 x2=
−

= − −303
919  

 

As the constraints have been defined as 

membership functions, the next step is compute 

the membership of the decision function G(x). 

This computation is performed using the 

linguistic conjunction “and” because the objective 

function and the constraints must be satisfied 

simultaneously. The result is shown in Figure 4, 

where the minimum operator has been used. The 

bold curve is the decision membership function. 

The final step is the computation of the 

optimal value of x* by the maximum relation of 

G(x). In this case, the maximum value (optimal 

value) is located in the intersection between the 

second part of constraint C2 and the pseudogoal 

F(x). Equaling the two function, the final value of 

x* is equal to 3.2. 

0

1

2 2,5 3 3,5 4 4,5 5 5,5 6

µ(x)

F( x)
C( x)

G( x)

x* = 3.2

 
Fig.4 - Computation of Membership Functions. 

FUZZY PROGRAMMING 

Fuzzy Linear Programming 

A classical linear programming can be 

defined by an optimization of a linear objective 

function and linear constraints. Usually, this 

procedure can be represented by the following 

statements 

 maximize f(x) = cT.x 

 

 subject to Ax ≤ b 

   x ≥ 0 

where c(n×1), b(m×1), A(m×n) and m<n. The 

inequality constraints form a feasible region. 

The fuzzy linear programming has the same 

structure of the classical linear programming. The 

difference between these two approaches is that in 

the classical approach values and operators are 

crisp, while, in the fuzzy approach values and/or 
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operators may assume fuzzy characteristics. 

Examples of this fuzzy transformation may be: 

• the operator “maximize” cannot specifically 

be a search for the optimal but only a 

“improving of quality”, 

• the operators ≤ and ≥ can express functions as 

shown in Figure 2, where for the “belong” 

crisp region the value of membership is equal 

to 1, and outside this region, an exponential 

function defines the membership values, and 

• the elements of the vectors b and c and the 

matrix A can also be a fuzzy definition for a 

better representation of the real world. 

Many contributions have been made in this 

field, composing the above features [23] and 

defining new fuzzification and inference 

processes [24]. Other developments, including 

duality theory, sensitivity analysis, and integer 

fuzzy programming can be found in [25]. 

Fuzzy Dynamic Programming 

The idea in classical dynamic programming 

is to decompose a main problem into several 

subproblems (one for each variable). Thus, the 

optimization of each subproblem is divided in a 

multistage decision process. Here, all operators 

and values have a crisp meaning. In the same 

way, a fuzzy dynamic programming can be 

defined as a fuzzification of all (or part of) these 

elements. In a well-known fuzzy dynamic 

programming method, Belmann and Zadeh [21] 

have proposed to work with fuzzy constraints and 

fuzzy goals to determine the subgoals of each step 

of the process, while the transformation function 

is maintained crisp. An excellent example of the 

application of fuzzy dynamic programming to 

power systems is presented in [15]. 

FUZZY MULTI CRITERIA ANALYSIS 

Description of the Problem 

During any decision making process, many 

different factors must be taken into account. 

These factors can be heuristic or arising from 

numerical analysis. Usually, the heuristic factors 

are due to the planner's previous experience and 

have a non-numerical structure, i.e., they can be 

better expressed by linguistic values. The problem 

that planners face in their daily job is how to 

incorporate these linguistic values into numerical 

analysis. Commonly, the computational packages 

do not include the possibility to using non-

numerical values. Thus, planners have two 

possibilities when using this kind of knowledge. 

One is to put in numbers the linguistic 

knowledge. The other possibility is to forget this 

knowledge during the numerical analysis and 

then, after getting the final result, modify it so as 
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to make an adaptation to take into account the 

planner expertise. 

The problem is that both approaches are not 

good. In the first one, where planner tries to 

transform linguistic knowledge into numerical 

values, much information is lost during this 

process. For example, if the following statement 

is to be incorporated: "The distribution feeder A is 

quite loaded." What is a good numerical value for 

"quite loaded" ? Two possible ways can be taken; 

that is, the planner uses a number to define it, for 

example, 0.80 pu, or he/she can use a percentage, 

say 90%. Here we also lose information in both 

transformations. In the first one (the worst 

transformation), if 0.80 pu relates to a 0.85 pu 

feeder capacity, the statement does not include 

information about other numbers around 0.80 pu, 

for example: 0.78, 0.82, and so on. Each of these 

expresses the same knowledge and have the same 

result. On the other hand, the number 0.80 alone 

can not represent "quite loaded feeder", for 

example, if the feeder capacity is 1.30 pu. 

The second representation of the statement, 

using a percentage or a range, has the same lost of 

information problem. Let us assume a "small 

change" in the percentage number; for a long-

term decision-making process, it may result in the 

same final decision. The problem is that it is very 

hard to quantify 'what is a small change' in a 

conventional computational tool. 

The other possible approach is to modify 

the final result in order to take into account the 

planner expertise. This approach has been 

commonly used in practical analyses; however, 

planners have had difficulty in explaining why 

they need to modify a final value, mainly, if this 

modification can change the final result order 

given by the decision process. 

Classification of Fuzzy Multi-Criteria Analysis 

The classification of fuzzy multi-criteria 

problems is divided in two main types: multi-

objective decision-making and multi-attribute 

decision-making. In general, the difference 

between these two approaches is located in the 

decision space. For the former approach, this 

space is continuous, and the problem is solved by 

mathematical programming. For the latter 

approach, the decision space is discrete, and other 

approaches have been developed [16,26]. The 

next subsection presents an algorithm to treat this 

problem. 

Presentation of a Multi-Attribute Decision-

Making Algorithm 

This algorithm is an extension of Dhar's 

algorithm, proposed in [17]. Some aspects of data 

structure representation, inclusion of a new matrix 

composition and a different fuzzy decision-

making process are some modifications and 
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extensions proposed in this algorithm. The 

original algorithm divides the structure of the 

problem in alternatives, scenarios and criteria, and 

its matrix representation. Several facilities are 

included in the user-interface for an easy 

accomplishment of the tasks. 

The steps of the proposed algorithm are 

presented as follows: 

Step 1: Choose the alternatives to solve the 

problems and the criteria that will be used in the 

decision-making process. 

Step 2: Create scenarios with fuzzy weights for 

each criterion and give the conjunctions to 

compose them. 

Step 3: Create a matrix by the combination 

between scenarios and alternatives for each 

decision criterion. These matrices must contain 

information about the relation between each 

scenario and each alternative in the light of each 

criterion. 

Step 4: Create the fuzzy conditional statements to 

represent possible data-base knowledge. 

Step 5: Obtain, for each matrix of Step 3, the 

fuzzy set Zi that is formed by the input weights, 

according to 
Z xi i j k= µ ( ) /, ,p j

p j k

p

x ),

k
 

where i, j and k represent criterion, alternative and 

scenario, respectively; and pj,k is the weight 

assigned to the alternative j for a scenario k in a 

given criterion i. 

Step 6: Obtain the fuzzy set Li formed by the 

weights pj,k that are assigned to the pertinence 

matrix which, in turn, is given by the ratio 

between each weight and the largest value among 

all weights of the same matrix. The following 

equations express these value, where Λ represents 

the largest weight of the matrix, 

L xi j k= µΛ ( ) /, ,
 

µΛ Λ( , ) /,j k p j k=  

Step 7: Obtain from Zi and Li a matrix Ci that is 

expressed by the equations, 

C xi C j k j ki
= µ ( ) /, ,

 

µ µ µC j k i j k j ki
x x( ) ( ( ), ( ), ,= min Λ

 

Step 8: Use MAX, MIN, and algebraic sum 

operators to compose the fuzzy decision set, 

according to Step 2. 

Step 9: Present the final decision set for each 

criterion, and the total result. 

The Steps 5 to 7 have been proposed by 

Dhar in his original algorithm. More information 

about the algorithm to build the fuzzy conditional 

statements to represent data sets can be found in 

[18,19]. 
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ILLUSTRATIVE EXAMPLE 

Types of Generation System 

The expansion strategy of a generation 

system is to be analyzed, at long term, for a given 

region. The generation options are hydroelectric 

plants (H) and nuclear-type thermoelectric plants 

(N), natural gas (NG), coal (C) and oil fuel (OF). 

This expansion policy is also intended to be 

associated to investments in electrical power 

conservation programs trying to establish, within 

some scenes, an option scale of generation and 

conservation measures. 

The characterization of each plant, under 

quantitative and qualitative standpoint, is shown 

in Table 1. Some data have been obtained from 

Brazilian Power System (Eletrobrás) Internal 

Reports. These values are divided in two groups: 

numerical values and linguistic values. For the 

generating system there are construction and 

generation costs; for the electric power there are 

the "demand reduction cost" and the "saved 

energy cost", in (US$/kW) and (US$/kWh), 

respectively. Tables 2 and 3 illustrate these costs 

for the industrial sector and final uses of electrical 

power [20]. 

 

Table 1 - Quantitative and Qualitative Characteristics of the Generation Systems 

 Construct. Cost 

(US$/kW) 

O&M Cost 

(US$/km /year) 

Unity Generation 

Cost (US$/kWh) 

Environmental 

Costs 

Generation 

Reliability 

Ease of 

Implementation 

H 1500 7 0.032 Small Very High Small 

N 1660 44 0.059 Very High High High 

NG 1100 22 0.051 Small Regular Regular 

C 1400 28 0.045 Regular Regular Regular 

OF 1200 12 0.073 Regular Regular Regular 

Table 2 - Electrical power conservation costs for industrial sector 

 Demand Reduction Cost (US$/kW) Saved Energy Cost (US$/kWh) 

Motors 200-1600 0.02-0.04 

Direct Heating (Furnaces) 200-1200 0.02-0.03 

Indirect Heating  200-900 0.01-0.02 

Electrochemical Processes 200-600 0.01-0.03 

Lighting 200-1300 0.02-0.04 

Note: Indirect heating includes boiler and water heating. 
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Table 3 - Comparison of different lighting options 
Kind of Lamp Power (W) Average Operating 

Life (hours) 

Saved Energy Cost (US$/kWh) 

      A                        B 

Incandescent Economical (I1) 54 1000 0.027 0.026 

Common Tubular Fluorescent (I2) 20 6000 0.031 0.026 

Fluorescent Compact (I3) 13 8000 0.060 0.049 

     Note: A - considering 3 hours/day operation 

      B - considering 10/hours/day operation 

 

For motors, main electrical power consumer 

in the industrial sector, it is possible to work in 

programs of energy conservation which seek, for 

example, a better used and adaptation in the 

industrial process (MOTOR 1), the employment 

of more efficient motors (MOTOR 2) or even the 

use of varying speed controllers (MOTOR 3) 

applied to varying torque motors. Each of these 

options presents different saving energy costs, as 

shown in Table 4. 

 

Table 4 - Comparison of different costs of the electrical  

 
Kind of Program Saved Energy Cost (US$/kWh) 

Motor 1 (M1) 0.01 

Motor 2 (M2) 0.02 

Motor 3 (M3) 0.04 

 

 

 

Based on the information that we can obtain 

from Tables 1 to 4, the several technologies 

aiming at electrical power conservation can be 

quantitatively and qualitatively characterized 

within a planning horizon. 

Energy Conservation Scenarios and 

Characteristic Matrices 

By attributing a weight from 0 to 10, for 

example, or a fuzzy linguistic variable, that 

represents subjectively the importance of each 

generation plant and the actions of electrical 

power conservation in the final uses, scenes can 
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be established and the so-called characteristic 

matrices can be constructed (Table 5). 

Table 5 - Electrical Power Conservation Scene in 

the Planning Horizon 

Possible 

States 

Description Membership 

Degree 

HM Household Medium 0.3 

IM Industrial Medium 0.4 

IH Industrial High 0.8 

CL Commercial Low 0.2 

 

 

The characteristic matrices are constructed for 

the following analysis criteria: 

- construction cost or demand reduction cost 

- operation and maintenance (O&M) cost; 

- generation cost or saved energy cost; 

- environmental costs; 

- generation reliability or action reliability; 

- ease of implementation; and 

- usefulness to the entrepreneur. 

As an example of this kind of matrix, Table 6 

shows the O&M cost characteristic matrix. 

 

Table 6 - Characteristic Matrix - O&M Cost 
Alternatives States HM IM IH CL 

H 8 9 10 7 

N 2 2 2 2 

NG 3 3 4 3 

C 2 2 3 2 

OF 5 6 7 5 

I1 VH H H VM 

I2 H VM VM M 

I3 H VM VM M 

M1 VL VM VM VL 

M2 VL VM VM VL 

M3 VL M M VL 

Calculation of the Fuzzy Decision Set 

By using the proposed methodology, the 

following decision set D is obtained: 

 

 

D = { (0.6073/H) , (0.4476/N) , (0.6223/NG) , 

(0.5867/C) , (0.5257/OF) , (0.5692/I1) , 

(0.5375/I2) , (0.5432/I3), (0.7165/M1) , 

(0.7032/M2) , (0.5272/M3) } 
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Thus, for the conditions stated above, the 

investment strategy in conservation and 

generation of electrical power is as follows: 

1st option: To improve the use and suitability 

of the motor in the industrial process. 

2nd option: To employ more efficient motors 

in the motors in the process. 

3rd option: Hydroelectric generation 

4th option: Natural gas thermoelectric 

generation 

5th option: Coal thermoelectric generation 

6th option: Nuclear thermoelectric generation 

Consider, as an example, that the electric 

power conservation potential through 

employment of the 1st option is 8 (TWh) and with 

the 2nd option is 5 (TWh). Consider also a 

prediction in the planning horizon of the electrical 

power market in the order of 60 (TWh). Then, 

once the 2 first options of conservation are 

exhausted, there would be a deficit of 47 (TWh). 

By using the policy of avoiding this deficit only 

through generation and by considering 

hydroelectric generation potentials of 25 (TWh), 

natural gas thermoelectric generation of 10 (TWh) 

and coal generation of 20 (TWh) yields the 

following strategy: 

Conservation: 

 13 (TWh), representing 22% of the power 

demand 

Generation: 

 47 (TWh), representing 78% of the power 

demand 

Conservation actions: 

 Use 1st and 2nd options 

Generation actions: 

 53% for hydroelectric generation 

 21% for natural gas thermoelectric generation 

 26% for coal thermoelectric generation 

RESUMO 

O uso de técnicas de otimização tem sido 

importante para reduzir custos e perdas nos 

sistemas elétricos de potên cia. Um dos pontos 

mais importantes no processo de otimização é o 

custo computacional para se achar a melhor 

solução. Algumas vezes, este custo pode 

compreender o uso de técnicas para resolver um 

problema. Sào exemplos de custos 

computacionais: o número de limições, o número 

de variáveis e a pequena velocidade de 

convergência. Este artigo apresenta o 

desenvolvimento de um processo de otimização 

difusa. Neste artigo começa com os aspectos 

teóricos do processo de otimização difusa e então 

apresenta um exemplo de conservação de energia 

em sistemas de potência. 

PALAVRAS-CHAVE: Modelagem, teoria dos 

conjuntos difusos, técnicas de linearização. 
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