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ABSTRACT 
 

We analyze the performance of a kinematically redundant, 7 DOF free-flying robot under Cartesian velocity telecontrol. It is 
shown that the system can be easily destabilized when conventional pseudoinverse redundancy resolution is used, which is due 
to the presence of algorithmic singularities. A singularity-consistent (SC) solution to the problem is proposed that guarantees 
stability throughout the feasible motion range. Two SC redundancy resolution techniques are compared: one based on the 
pseudoinverse of the generalized Jacobian, and another one, based on null space minimization of base attitude disturbance. It 
is shown that although null space minimization outperforms the pseudoinverse approach in terms of disturbance minimization, 
this is done at the expense of spurious arm motions. And the gain from the minimization is not sufficient to diminish the 
disadvantage. Thus, it is concluded that SC pseudoinverse control is a very reliable way of redundancy resolution for a 
teleoperated arm in space.  
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INTRODUCTION 

Free-flying space robots are expected to play an 

important role in future space missions, such as 

maintenance and repair of existing space 

structures or satellite systems. There have been 

several projects underway, notably the Ranger 

project in USA[1] and the ETS VII project in 

Japan[2]. The ETS VII system was successfully 

launched in November 1997 and a number of 

breakthrough experiments have been already 

conducted on orbit.  

 Special path planning and control 

techniques have been developed over the years to 

account for the free-floating satellite base. The 

lack of a fixed base means that the reaction force 

induced by the robot arm appears as disturbance 

from the standpoint of the satellite attitude 

control system (ACS). The current approach used 

with the ETS VII system is based on evaluation 

of the accumulative momentum along the arm 

trajectory before motion execution. When this 

momentum exceeds the capacity of the ACS 

actuators (reaction wheels), trajectory re-

planning is invoked, resulting usually in slower 

motion along the same path[2]. It should be 

emphasized that this technique is based on the 

momentum conservation principle, and thus, the 
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path planning and control problems can be 

solved in terms of velocities, without the need to 

resolve the complete, second-order system 

dynamics. 

 The above approach is tractable and, 

therefore, consistent with the current 

technological level, including available on-board 

computational power. On the other hand, other 

manipulator path planning and control techniques 

have been developed which eventually may 

avoid the trajectory re-planning problem. These 

techniques are based on disturbance or reaction 

minimization. It has been pointed out in literature 

that a possible way to achieve such minimization 

is to employ kinematic redundancy[3]. 

 Kinematic redundancy resolution 

techniques are usually based on local 

minimization methods. There are two main 

groups of algorithms: the extended task-space 

approach and the null-space approach[4]. In both 

approaches, the main constraint (the desirable 

end-effector motion constraint) is augmented 

with an additional constraint, a so-called 

``additional task,'' to resolve the redundancy. 

Note that additional constraints are usually 

nonlinear. In the case of a free-flying robot, for 

example, the additional task is derived from the 

momentum conservation equation[3], which is a 

partially nonholonomic motion constraint. Thus, 

the superposition of the two constraints leads to a 

highly nonlinear system. As a result, the set of 

singularities composed of kinematic singularities 

(inherent to the main motion constraint), 

additional task singularities (inherent to the 

additional motion constraint) and singularities 

due to the interference of the two constraints, 

increases significantly. This is quite undesirable 

because local control methods tend to destabilize 

the system in the neighborhood of a singular 

point[4]. We note, therefore, that a credible 

(local) redundancy resolution technique should 

always address the singularity problem. 

 The aim of this paper is to examine the 

performance of a disturbance minimization 

algorithm in the presence of singularities. The 

algorithm combines a null space minimization 

approach (the so-called ``reaction null space 

approach''[5]) with a technique which we 

developed recently to deal with kinematic 

singularities. The latter technique, referred to as 

the ``singularity-consistent (SC)'' approach[6], 

will be applied here for the first time to treat also 

algorithmic singularities, besides the usual 

kinematic singularities. It should be pointed out 

that our approach to singularity treatment has 

some advantages, mainly in terms of stability and 

parameter tuning, as compared to the well-known 

``Damped Least-Squares (DLS)'' method[8, 9]. 

For a detailed comparison, the interested reader 

is referred to[7]. 
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BACKGROUND 

The free-flying robot model consists of the 

satellite base and a seven-link serial manipulator 

arm attached to it. More specifically, in the 

simulations we will use a model with the 

kinematic structure of the Robotics Research 

Corp. 7 DOF arm[10]. It is assumed that the 

momenta of the robot are conserved (there are no 

external forces). Denote by P the linear 

momentum and by Lg the angular momentum 

with respect to the robot centroid. Then we have:  

const
Pr

HH
L
P

gb
bb

g
=








×

++=






 0
φφ &Ω  (1) 

where φ ∈ ℜ7 denotes arm joint coordinates, 

Ω=[vT ωT]T stands for the spatial velocity of the 

base, and rgb is the base centroid position with 

respect to the system centroid. Matrix 
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is the base inertia matrix, and 
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is a submatrix of the system inertia matrix, which 

will be referred to as the inertia coupling matrix. 

The initial state is assumed zero and 

hence, the constant in the above equation 

becomes also zero. Below we focus on the 

angular part of the momentum equation (1). The 

reason is that the angular component may lead to 

attitude destabilization. Since the angular part of 

the momentum, Lg, is expressed with reference to 

the system centroid, the linear part, P , can be 

canceled out:  

φω ωφω
&HH ~~

+=0 ,  (2) 

where  and ( gbrSHH 2ωωω +=
~ )

( )φω ∂∂+ gbgb rrS )(ωφωφ = HH~ , ω standing 

for the total mass and S(ο) denoting an operator 

transforming a 3 dimensional vector into a 3 × 3 

skew-symmetric matrix. 

Each of the two components on the right-

hand-side of Equation (2) defines a partial 

angular momentum of the space robot.  

will be called the angular momentum of the base. 

The other partial momentum, , is related 

to manipulator motion, and will be referred to as 

the coupling angular momentum, or shortly, the 

coupling momentum.  

ωωH~

φωφ
&H~

It is our objective in this work to 

minimize base angular disturbance. This is the 

same as requiring ω(t) → 0 throughout the arm 

motion. Thus, two velocity constraint equations 

can be written as:  

( )( )φφωφ
&tH~=0   (3) 
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and  

( )( ) (ttJtx GJ φφ && =)( ) ;  (4)  

where ∈ ℜx& 6 denotes end-effector spatial 

velocity and  stands for the generalized 

manipulator Jacobian matrix[11].  

( )φGJJ

Note that the above system of two 

equations is overdetermined, and hence, no exact 

solution exists. Thus, one has to look for an 

approximate solution. When speaking of 

approximation, we have in mind a local method, 

such as least-squares. The goal can be formulated 

as minimization of the objective function  

( )( ) ( ) ( )( ) ( ) 21 wttJtxwttH φφφφωφ
&&& −+ )(~

    (5) 

where ||ο||w1 denotes weighted Euclidean norm1 . 

The solution to this problem leads to a technique 

called "improved configuration control"[12].  

In this work, we will employ a different 

type of redundancy resolution. Note that the two 

velocity equations above are underdetermined, if 

taken separately. Hence, each of them admits a 

set of joint velocity vectors  as a solution. 

Once these sets are determined, the other 

equation can be used to derive the unique 

solution. Thus, one obtains two unique solutions, 

which are exact solutions to either Equation (3) 

φ&

or Equation (4). This is nothing else then the 

well-known "task-of-priority" approach[13].  

                                                           

)

1 Care must be taken here since the end-effector task space 
is not a meterizable space in general, unless one imposes 
certain constraints. 

 

SINGULARITY-CONSISTENT 

CARTESIAN VELOCITY CONTROL 

In practice, it is important to ensure exact end-

effector task performance. In other words, we 

have to assign higher priority to the end-effector 

task, and lower priority to the attitude 

disturbance minimization task. Thus, we derive 

the set of exact solutions to the end-effector 

velocity constraint Equation (4), and obtain an 

unique solution from this set by restricting it via 

the angular momentum Equation (3). From 

Equation (4) we have:  

( )( ) ( ) ( )( ) (ttntxtJt JG γφφφ += + && )( ,  (6)  

where (ο)+ denotes the pseudoinverse, n ∈ ℜ7 

stands for the null space vector (recall that the 

degree of redundancy is one, and hence, there is 

only one nonzero vector in the null space, unless 

the generalized Jacobian becomes rank-

deficient). γ is a scalar variable which is 

determined as follows. First, substitute the above 

result into Equation (3) to obtain:  

0=++ γωφωφ nHxJH JG
~~

&      (7)  

and then solve for γ : 

xJHc JG &++−= ωφγ ~
,  (8) 
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where the vector . The variable γ is 

substituted back into Equation (6) to obtain the 

final solution as : 

nHc ωφ
~

≡

( ) xJHncI GJ &
& ++−= ωφφ ~

  (9) 

 

The form of this solution is typical for null-space 

based redundancy resolution. 

 It is known that the (pseudo) inverse is 

discontinuous at singular points. One can then 

expect stability problems to arise due to the two 

pseudoinverses in the last equation. Care must be 

taken by operators of space-based robot arms to 

avoid singular points. While this can be 

relatively easily done for nonredundant arms, in 

case of a redundant arm it is more difficult for 

the operator to comprehend the set of arm 

singularities. The introduction of algorithmic 

singularities, which are different from kinematic 

ones (in our case, algorithmic singularities are 

introduced via the c+ term), further complicates 

the situation. The operator would be hardly able 

to comprehend and to avoid all types of 

singularities. Even computer-supported 

visualization would be of not much help. 

Therefore, we give up such type of analysis and 

prefer to modify the last solution so that 

discontinuities disappear. Fortunately, this can be 

done in a straightforward manner.  

We will employ the singularity-consistent 

(SC) approach developed earlier and tested 

experimentally with a teleoperation system with 

a nonredundant slave arm[6, 14]. Note that the 

two pseudoinverses are:  

( 1−+ = GJ
T
GJ

T
GJGJ JJJJ )  (10) 

and 

( ) TT cccc
1−+ = .  (11) 

Discontinuities are due to the inverse (ο)-1 in each 

of the above expressions. The inverse can be 

represented as 

( ) ( )oo adjσ=−1 ,  (12) 

where adj(ο) denotes the adjoint, and ( )odet
1

=σ . 

Obviously, in the neighborhood of a singular 

point, σ tends to infinity and the system can be 

easily destabilized. 

 Looking at Equation (9), it becomes 

apparent that the two pseudoinverses influence 

the solution in different ways. Consider first 

. In this case, we can simply ignore +
GJJ

( )GJ
T
GJ JJdet1=GJσ  because it is easy to 

compensate for it via the magnitude of the 

velocity command vector . Such modification 

introduces an error along the direction of motion. 

But the important point is that there will be no 

x&
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deviation of the end-effector from the spatial 

path obtained via the original solution (9). Next, 

consider the c+ pseudoinverse. Since this is the 

pseudoinverse of a vector, we have det(cTc) = cTc  

and adj(cTc) = 1. The term σc = 1/( cTc) cannot 

be simply ignored, as it was the case with σGJ . 

What we can do is to restrict it when it reaches a 

certain small value ε.  

Equation (9) is rewritten as 

( ) ( )SJJadjJHncI GJ
T
GJ

T
GJ

T
c ωφσφ

~
−= l& . (13) 

where cc σσ =  if σ  and ε>c ε=c

x&

Sl=

σ , 

otherwise. In the above equations, we have 

decomposed the input command vector  into 

direction and magnitude. These are expressed 

respectively via S - the unit instantaneous screw 

of the end-effector, and , such thatl 2 .  x&

Equation (13) can be analyzed as an 

autonomous dynamical system, parameterized 

via the screw S. It is known that equilibrium 

points are the critical points of such systems. 

Fortunately, at a critical point the system will not 

destabilize since the adjoint vanishes, and motion 

tends to zero. The solution has an inherent 

damping property. This is a major advantage of 

the SC approach, as compared to pseudoinverse 

techniques, the DLS method inclusively. Such an 

advantage is especially useful in space, where 

safety is of major concern.  

                                                           
2 The elements of S have the same units as those of , 

while  is dimensionless.  
x&

l

 

SIMULATION STUDY 

The simulation software used is a MATLAB 

based free software package for multibody 

system modeling, SpaceDyn, developed at 

Tohoku University[15]. The free-flying robot 

model consists of a base-satellite body (body 0) 

and a 7 DOF manipulator arm attached to it. As 

already mentioned, we use the kinematic model 

of the Robotics Research Corp. 7 DOF arm. 

Kinematic parameters of the arm can be found 

in[10]. Dynamic parameters, including positions 

of link centroids, link masses and inertias, are 

presented in the appendix, using the notation of 

the SpaceDyn package.  

In the simulations, a constant input 

command in terms of both direction S and 

magnitude is applied. The values assigned to the 

commanded end-effector direction are shown in 

the following table:  

S(1) S(2) S(3) S(4) S(5) S(6) 

21−
 

0 21−  0 0 0 

m/s m/s m/s rad/s rad/s rad/s 

Thus, the end-effector will move along a 

straight-line path in the x-z plane, with constant 
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orientation. Note also that a constant (  

throughout the simulation) yelds a nonzero initial 

velocity. But it would be easy to obtain zero 

initial (and final) velocity, if necessary, since the 

velocity scalable via .  

l 3=l

l

In the first simulation the initial 

configuration is arbitrarily chosen as:  

[ radT0202020 πππφ −= ] [ ]  

To illustrate the additional-task singularity 

problem due to rank deficiency of the 

generalized Jacobian, we set fl = 0 in Equation 

(6), which yields the "conventional" 

pseudoinverse based solution. Figure 1 displays 

the joint velocities and the end-effector path in 

the x-z plane. At the end of motion instabilities 

are clearly observed. It is easily verified that this 

is indeed due to rank deficiency of generalized 

Jacobian. For comparison, we repeat the same 

motion, i.e. with γ = 0, but using the following 

SC version of the pseudoinverse based solution : 

( )SJJadjJ GJ
T
GJ

T
GJl& =φ      (14) 

The result is shown in Figure 2. This 

time, no instabilities are observed. Of course, the 

singularity still exists, but the behavior is quite 

different from the previous case: motion tends to 

zero, which is due to the critical point of the 

autonomous system. This behavior means that, 

when approaching the singularity, the operator 

will find it more and more difficult to drive the 

end-effector forward, if  is kept constant.  l

  
 

Figure 1: Motion under conventional pseudoinverse control. 
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Figure 2: Motion under SC pseudoinverse control 

In the next simulation we employ the 
base attitude disturbance minimization technique, 
according to Equation (9). We set the threshold ε 
= 0:01. The initial configuration is the same as 
above. Note, however, that this is not an optimal 
configuration since it was arbitrarily chosen. 
Thus, we can expect fast initial motion, which is 

needed to bring the arm configuration in accord 
with the minimization criterion. The result is 
shown in Figure 3. Indeed, there is a very fast 
arm reconfiguration at the beginning. But the 
large velocity can be easily scaled down, as 
already explained. At the end of the motion, the 
velocity increases again. Analysis  

 
Figure 3: Motion under SC null space minimum disturbance control with non-optimal initial configuration 

 
 

shows that this is due to the vanishing vector c. 

This deteriorates the end-effector path as well. In 

addition, the end-effector cannot travel as far as 

under SC pseudoinverse control. We performed 

once again the simulation, but with an initial 

configuration, close to the optimal one. The data 
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for the new initial configuration was determined 

from the previous path data, that is, it matches a 

configuration attained shortly after the motion 

was started:  

 

[ ] radT7661.0029.13123.14801.17994.00443.23328.1 −−−−=φ [ ]
The results are depicted in Figure 4. It is seen 

that, indeed, now there is no fast initial motion.  

But the problem at the end of the motion, due to 

the vanishing vector c, remains. This shows that 

null space minimization yields a poorer 

performance in terms of spurious arm motion 

than the SC pseudoinverse technique. For 

comparison, Figure 5 depicts the SC 

pseudoinverse control performance with the new 

initial configuration. The length of the path is 

now larger. Insight about base attitude reaction 

under SC pseudoinverse control and SC null 

space minimization control is obtained from the 

graphs in Figure 6. Figure 6 (a) is for the non-

optimal initial configuration, while Figure 6 (b) 

is for the optimal one. It is apparent that the SC 

null space minimization technique outperforms 

the SC pseudoinverse one. But the gain  

  
Figure 4: Motion under SC null space minimum disturbance control with optimal initial configuration

through the former approach seems not to be that 

big to diminish the significant disadvantage of 

spurious arm motion due to the vector c 

singularity.  

 

CONCLUSIONS 

We analyzed the performance of a 7 DOF free-

flying robot under velocity control. Under 

conventional pseudoinverse and null space 

redundancy resolution, the system can be easily 
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destabilized due to the algorithmic singularities. 

Therefore, we proposed a singularity-consistent 

solution to the problem. Under this technique no 

instabilities are observed. Further on, we 

compared two SC redundancy resolution 

techniques: one based on the pseudoinverse of 

the generalized Jacobian, and another one, based 

on null space minimization of base attitude 

disturbance. Although the latter method 

outperforms the pseudoinverse in terms of 

disturbance minimization, this is done at the 

expense of spurious arm motions. And the gain 

from the minimization is not sufficient to 

diminish the disadvantage. We conclude that SC 

pseudoinverse control is a suitable approach to 

redundancy resolution for a teleoperated arm in 

space.  

 

  
Figure 5: Motion under SC pseudoinverse control with the optimal initial configuration. 

APPENDIX 

Notations are presented in the form of the 

SpaceDyn simulation package[15]. The location 

of link centroids of the free-flying robot in [m] 

are:  

cc(:,1,1) = [ 0 0 -0.2 ]'; cc(:,2,2) = [ 0 0 0 ]';  

cc(:,3,3) = [ 0 0 -0.3 ]'; cc(:,4,4) = [ 0 0 0 ]';  

cc(:,5,5) = [ 0 0 -0.3 ]'; cc(:,6,6) = [ 0 0 0 ]';  

cc(:,7,7) = [ 0 0 0.05 ]';  

cc(:,1,2) = [ 0.12319 0 0.2 ]'; cc(:,2,3) = [ -

0.10795 -0.5461 0 ]';  

cc(:,3,4) = [ -0.07938 0 -0.3 ]'; cc(:,4,5) = [ 

0.07938 0.5461 0 ]';  

cc(:,5,6) = [ -0.0492 0 -0.3 ]'; cc(:,6,7) = [ 0.0492 

0 0.05 ]'  

Base mass is m0 = 2469 [kg]. Base inertia 

is I0 = diag [7010; 2320; 6200] [kgm2]. The mass 

of each manipulator link is 20 [kg], except the 
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last link, with mass of 37 [kg]. Manipulator link 

inertia tensors, expressed in [kgm 2 ], are:  

 
 

I1 = diag [0:2452; 0:2452; 0:1] I2 = diag [0:1; 1:315; 1:315] 

I3 = diag [0:1; 0:71150; 0:7115] I4 = diag [0:1464; 0:1464; 0:064] 

I5 = diag [0:1599; 0:1599; 0:064] I6 = diag [0:1599; 0:1599; 0:064] 

I7 = diag [0:9652; 0:9652; 0:185]. 

 
Figure 6: Base attitude reaction under SC pseudoinverse control and SC null space minimization control: 

(a) non-optimal initial configuration; (b) optimal initial configuration. 
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