APPLICATION OF THE PID CONTROL SYSTEM TO THE ROTATIONAL MOTION OF THE ARTIFICIAL SUBSATELLITE OF THE SPACE TETHER SYSTEM
DOI:
https://doi.org/10.69609/1516-2893.2025.v31.n1.a4006Keywords:
Palavras-chave: PID; STS; Satélite Artificial; Quatérnions; Sistemas de ControleAbstract
The present work aims to analyze and apply a PID control system in the rotational movement of a subsatellite S2 and its movement around the main satellite S1 of a Space Tether System, composed of two satellites connected by a cable in space. This study will be carried out through the numerical integrations of the equations of motion, starting from known initial conditions. The translational movement of the subsatellite around the main satellite is described in spherical coordinates (l, α, β), defined by the distance and angles that position the position vector between the two satellites. The results of the numerical propagation show that S2 moves around S1 in the orbital plane of S1 around the Earth and oscillates vertically to that plane. Rotational motion is described by Euler's equations and by kinematic equations, described by quaternions, because in certain situations the kinematic equations described by Euler's angles can present singularities, making it difficult to solve the problem. The adopted methodology aims to eliminate these singularities through quaternions, since the kinematic equations in terms of quaternions do not depend on trigonometric functions. As the adopted geometry is a parallelepiped for the subsatellite S2, its behavior regarding rotation is very similar along its x and z axes. The results of the numerical integration of the equations of rotational motion with quaternions highlight the proper behavior of the quaternions and the components of the rotational velocity of the subsatellite S2. The angular velocities stabilized close to 0 rad/s, even concluding that the control was not ideal, it presented good results for the problem analyzed at that moment.
Metrics
References
BILÉN, S. G.; GILCHRIST, B. E. Electrodynamic-tether time-domain reflectometer for analyzing tether faults and degradation. In: SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM - 2001, Online. AIP Conference Proceedings. Aip, 2001. v. 552, p. 461-466.
CABETTE, R. E. S; et al. Magnitude of Solar Radiation Torque in the Transition Region from the Umbra to the Dark Shadow of the Earth. Journal of Physics: Conference Series, v. 641, p. 012023, 2015. IOP Publishing. Doi: http://dx.doi.org/10.1088/1742-6596/641/1/012023
CAI, C. An Improved Electron Pre-Sheath Model for TSS-1R Current Enhancement Computations. Aerospace, v. 4, n. 1, p. 16, 16 mar. 2017. MDPI AG. Doi: http://dx.doi.org/10.3390/aerospace4010016
CASANOVA-ÁLVAREZ, M.; et al. Conceptual design of Electrodynamic Multi Tether system for self-propelled Jovian capture. Acta Astronautica, v. 184, p. 299-307, 2021. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.actaastro.2021.04.031
CHEN, Y.; et al. History of the Tether Concept and Tether Missions: a review. Isrn Astronomy And Astrophysics, v. 2013, p. 1-7, 2013. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2013/502973
COSMO, M. L.; LORENZINI, E. C. Tethers is Space Handbook. 3. ed. Cambridge: Smithsonian Astrophysical Observatory, 1997. p. 1-235.
DANG, D. C.; SUH, Y. S. Improved Single Inertial-Sensor-Based Attitude Estimation during Walking Using Velocity-Aided Observation. Sensors, v. 21, n. 10, p. 3428, 2021. MDPI AG. Doi: http://dx.doi.org/10.3390/s21103428
DIAKOV, P.A.; et al. Estimation of parameters of the space tethered system for stable load transportation along the tether. Acta Astronautica, v. 181, p. 602-605, 2021. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.actaastro.2020.12.006
DISTEFANO III, J. J.; STUBBERUD, A. R.; WILLIAMS, I. J. Sistemas de controle. Bookman Editora, 2ª. ed., 2014.
ELENEV, D. V.; et al. Aerodynamic space tether system as a system with distributed parameters. Iop Conference Series: Materials Science and Engineering, v. 1060, n. 1, p. 012016, 2021. IOP Publishing. Doi: http://dx.doi.org/10.1088/1757-899x/1060/1/012016
ELENEV, D. V.; ZABOLOTNOV, Y. M. Analysis of the dynamics of the deployed aerodynamic space tether system. Cosmic Research, v. 55, n. 5, p. 371-379, set. 2017. Pleiades Publishing Ltd. Doi: http://dx.doi.org/10.1134/s0010952517050057
ESA. Landsat. Disponível em: <https://www.esa.int/SPECIALS/Eduspace_Global_PT/SEMCCO60A2G_1.html>. Acesso em: 03 set. 2020.
GARCIA, R. V.; et al. Unscented Kalman Filter Applied to the Spacecraft Attitude Estimation with Euler Angles. Mathematical Problems In Engineering, v. 2012, p. 1-12, 2012. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2012/985429
GREENE, M.E; DENNEY, T.S. On state estimation for an orbiting single tether system. Ieee Transactions On Aerospace And Electronic Systems, v. 27, n. 4, p. 689-695, 1991. Institute of Electrical and Electronics Engineers (IEEE). Doi: http://dx.doi.org/10.1109/7.85043
GUO, H.; et al. A Global Interconnected Observer for Attitude and Gyro Bias Estimation with Vector Measurements. Sensors, v. 20, n. 22, p. 6514, 2020. MDPI AG. Doi: http://dx.doi.org/10.3390/s20226514
HUANG, P.; et al. A review of space tether in new applications. Nonlinear Dynamics, v. 94, n. 1, p. 1-19, 4 jun. 2018. Springer Science and Business Media LLC. Doi: http://dx.doi.org/10.1007/s11071-018-4389-5
INPE. Amazônia. Disponível em: <http://www.inpe.br/amazonia1/galeria.php>. Acesso em: 03 set. 2020.
LI, G.; et al. A novel looped space tether transportation system with multiple climbers for high efficiency. Acta Astronautica, v. 179, p. 253-265, 2021. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.actaastro.2020.11.003
LIU, J.; et al. Dynamics of the Space Tug System with a Short Tether. International Journal of Aerospace Engineering, v. 2015, p. 1-16, 2015. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2015/740253
LÍVIO, B.G. Propagação dinâmica do movimento do sistema de satélites tether. Trabalho de Conclusão de Curso em Engenharia Aeroespacial. Santo André –Sp. Ufabc, 2017.
LUO, C.; et al. Dynamics of a flexible multi-tethered satellite formation in a Halo orbit with uncertain parameters. Communications In Nonlinear Science And Numerical Simulation, v. 99, p. 105828, 2021. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.cnsns.2021.105828
LUO, C.; et al. Libration control of bare electrodynamic tether for three-dimensional deployment. Astrodynamics, v. 2, n. 3, p. 187-199, 2018. Springer Science and Business Media LLC. Doi: http://dx.doi.org/10.1007/s42064-018-0020-0
MINOR, M. A.; HIRSCHI, C. R. Automated tether management system for extravehicular activities. Journal of Field Robotics, v. 24, n. 4, p. 311-337, 2007. Wiley. Doi: http://dx.doi.org/10.1002/rob.20188
MOIA, G. P.; et al. ESTUDO DE TETHER SYSTEMS FORMADOS POR NANOSSATÉLITES. In: 2° CONGRESSO AEROESPACIAL BRASILEIRO, 2019, Santa Maria, Rio Grande do Sul. Anais do 2º Congresso Aeroespacial Brasileiro. Santa Maria, Rio Grande do Sul: Even3, 2019. p. 1-7.
MORAES, R. V.; et al. Attitude stability of artificial satellites subject to gravity gradient torque. Celestial Mechanics And Dynamical Astronomy, v. 104, n. 4, p. 337-353, 5 jul. 2009. Springer Science and Business Media LLC. Doi: http://dx.doi.org/10.1007/s10569-009-9216-3
NISE, N. S. Engenharia de sistemas de controle. 7ª. ed. Editora LTC, 2017. p.1-772.
NOVUS. Controle PID: rompendo a barreira do tempo. Disponível em: <https://www.novus.com.br/blog/artigo-controle- pid-rompendo-a-barreira-do-tempo/>. Acesso em: 03 set. 2020.
OGATA, K. Engenharia de Controle Moderno, 5ª. ed. Editora Pearson, 2010. p. 1-824.
OK, M.; et al. Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter. Sensors, v. 21, n. 4, p. 1282, 2021. MDPI AG. Doi: http://dx.doi.org/10.3390/s21041282
PISACANE, V. L. Fundamentals of space systems. 2a. Edição. New York, USA: Oxford University Press, 2005.
PRADO, P.R. DINÂMICA E CONTROLE DO MOVIMENTO DE UM SISTEMA TETHER ESPACIAL. Trabalho de Conclusão de Curso em Engenharia Aeroespacial. Santo André –Sp. Ufabc, 2019.
SANTOS, J. C.; et al. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions. Journal of Physics: Conference Series, v. 465, p. 012012, 2013. IOP Publishing. Doi: http://dx.doi.org/10.1088/1742-6596/465/1/012012
SILVA, R. D.; et al. DESIGN AND IMPLEMENTATION OF A REAL TIME ATTITUDE ESTIMATION SYSTEM WITH LOW COST SENSORS. Brazilian Journal of Development, v. 7, n. 3, p. 21745-21768, 2021. Brazilian Journal of Development. http://dx.doi.org/10.34117/bjdv7n3-065
SILVA, W. R.; et al. Nonlinear Least Squares Method for Gyros Bias and Attitude Estimation Using Satellite Attitude and Orbit Toolbox for Matlab. Journal of Physics: Conference Series, v. 641, p. 012005, 2015. IOP Publishing. Doi: http://dx.doi.org/10.1088/1742-6596/641/1/012005
SILVA, W. R.; et al. Study of Stability of Rotational Motion of Spacecraft with Canonical Variables. Mathematical Problems In Engineering, v. 2012, p. 1-19, 2012. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2012/137672
SILVA, W.R.; et al. Least Squares Method for Attitude Determination Using the Real Data of CBERS-2 Satellite. Applied Mechanics And Materials, v. 706, p. 181-190, 2014. Trans Tech Publications, Ltd. http://dx.doi.org/10.4028/www.scientific.net/amm.706.181
STRAY, F. G. Controle de atitude de um nano satélite. 2010. Dissertação de (Mestrado de Ciências em Engenharia Cibernética) – Faculdade de Matemática e Ciências Naturais, Universidade de Oslo, Kjeller, Noruega, 2010.
TEWARI, A. Dinâmica de voo atmosférico e espacial. 1ª. ed. Birkhũser Boston, 2007. p. 1-547.
TIROP, P.; JINGRUI, Z. Review of Control Methods and Strategies of Space Tether Satellites. American Journal of Traffic and Transportation Engineering, v. 4, n. 5, p. 137, 2019. Science Publishing Group. Doi: http://dx.doi.org/10.11648/j.ajtte.20190405.11
TRAGESSER, S. G.; UMBERT, L. Tethered aerobraking design for repeatable maneuvers. Acta Astronautica, v. 185, p. 148-160, 2021. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.actaastro.2021.04.027
XIE, K.; et al. Power Generation on a Bare Electrodynamic Tether during Debris Mitigation in Space. International Journal of Aerospace Engineering, v. 2021, p. 1-13, 2021. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2021/8834196
YONG, H.; et al. The research of real-time estimation method on tether parameters for tethered satellite. 2009 International Conference On Information And Automation, Zhuhai/Macau, p. 148-153, jun. 2009. IEEE. Doi: http://dx.doi.org/10.1109/icinfa.2009.5204910
ZANARDI, M. C. F. P. S. Dinâmica do Voo Espacial. 1. ed. Santo André - Sp: EdUFABC, 2018. p.1-256.
ZANARDI, M. C. F. P. S. Tese de Livre Docência. 1. ed. Guaratínguetá - Sp: Unesp, 2005.
ZANARDI, M. C. F.P.S.; et al. Dynamic propagation of space tether system motion. Journal of Physics: Conference Series, São José dos Campos, v. 1365, n. 1, p.01-11, 2019. IOP Publishing. Doi: http://dx.doi.org/10.1088/1742-6596/1365/1/012006
ZANARDI, M. C.; et al. Spacecraft’s attitude prediction: solar radiation torque and the earth’s shadow. Advances in Space Research, v. 36, n. 3, p. 466-471, jan. 2005. Elsevier BV. Doi: http://dx.doi.org/10.1016/j.asr.2005.01.070
ZHAI, G.; et al. Circular Orbit Target Capture Using Space Tether-Net System. Mathematical Problems In Engineering, v. 2013, p. 1-11, 2013. Hindawi Limited. Doi: http://dx.doi.org/10.1155/2013/601482
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ramon Oliveira Borges dos Santos, Regina Elaine Santos Cabette, Leandro Baroni, Maria Cecília França de Paula Santos Zanardi, Giulliano Assis Sodero Boaventura

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A submissão de originais para este periódico implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original.