WIND GENERATION ECONOMIC FEASIBILITY IN NORTHEAST BRAZIL

Autores

  • Antonio Henriques de Araujo Junior Universidade Estadual do Rio de Janeiro (UERJ)

Palavras-chave:

Eolic Energy, Wind generation Viability, Energy Sustainability

Resumo

This study seeks to pinpoint and define variables that exert the most significant influence on the economic feasibility of operating equipment and wind farms in Northeast Brazil. It aims to identify key performance factors crucial for the economic analysis, including technologies, equipment size, and productive efficiency. Brazil boasts one of the world's cleanest energy matrices, primarily relying on hydro power. Through cash flow analysis, the study enables the calculation of break-even points for various scrutinized variables such as equipment load factor, wind turbine investment, and effective hours available for wind generation. Despite the economic viability of wind generation projects in Northeast Brazil under the examined conditions, their profitability remains relatively low over a 15-year period.

Referências

Abdullahi, A., Bhattacharya, S., Li, C., Xiao, Y., & Wang, Y. (2022). Long term effect of operating loads on large monopile-supported offshore wind turbines in sand. Ocean Engineering, 245, 110404. https://doi.org/10.1016/j.oceaneng.2021.110404

Araujo, M. J. F. de, Araújo, M. V. F. de, Araujo Jr, A. H. de, Barros, J. G. M. de, Almeida, M. da G. de, Fonseca, B. B. da, Reis, J. S. D. M., Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. D. S. (2021). Pollution Credit Certificates Theory: An Analysis on the Quality of Solid Waste Management in Brazil. Quality Innovation Prosperity, 25(3), 1–17. https://doi.org/10.12776/qip.v25i3.1574

Assali, A., Khatib, T., & Najjar, A. (2019). Renewable energy awareness among future generation of Palestine. Renewable Energy, 136, 254–263. https://doi.org/10.1016/j.renene.2019.01.007

Associação Brasileira de Energia Eólica. (2018). Energia Eólica Os bons ventos do Brasil InfoVento no 9. In ABEEOLICA. https://abeeolica.org.br/wp-content/uploads/2019/03/Infovento_PT.pdf

Barbosa, L. C. F. M., Mathias, M. A. S., Santos, G. M., & De Oliveira, O. J. (2020). How the Knowledge of the Major Researchers Is Forging the Business Strategy Paths: Trends and Forecasts from the State of the Art. Quality Innovation Prosperity, 24(3), 1. https://doi.org/10.12776/qip.v24i3.1404

Bonou, A., Laurent, A., & Olsen, S. I. (2016). Life cycle assessment of onshore and offshore wind energy-from theory to application. Applied Energy, 180, 327–337. https://doi.org/10.1016/j.apenergy.2016.07.058

Chen, J., Liu, W., Jiang, D., Zhang, J., Ren, S., Li, L., Li, X., & Shi, X. (2017). Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China. Energy, 127, 462–478. https://doi.org/10.1016/j.energy.2017.03.088

Crawford, R. H. (2009). Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield. Renewable and Sustainable Energy Reviews, 13(9), 2653–2660. https://doi.org/10.1016/j.rser.2009.07.008

Empresa de Pesquisa Energética. (2018). Participação De Empreendimentos Eólicos Nos Leilões De Energia No Brasil. In EPE. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-251/topico-394/NT_EPE-DEE-NT-041_2018-r0.pdf

Horvat, A., Plavsic, T., & Kuzle, I. (2011). Experience of integrating wind energy in the power system in Adriatic wind conditions. IET Conference on Renewable Power Generation (RPG 2011), 211–211. https://doi.org/10.1049/cp.2011.0182

Joos, M., & Staffell, I. (2018). Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany. Renewable and Sustainable Energy Reviews, 86, 45–65. https://doi.org/10.1016/j.rser.2018.01.009

Khambalkar, V., Dahatonde, S. B., Kale, M. U., & Karale, D. S. (2007). Wind Energy Cost and Feasibility of a 2 MW Wind Power Project. International Energy Journal, 8, 285–290.

Kothari, C. R., & Garg, G. (2019). Research methodology methods and techniques. In New Age International (4o). New Age International.

Matayoshi, H., Howlader, A. M., Datta, M., & Senjyu, T. (2018). Control strategy of PMSG based wind energy conversion system under strong wind conditions. Energy for Sustainable Development, 45, 211–218. https://doi.org/10.1016/j.esd.2018.07.001

Nian, V., Liu, Y., & Zhong, S. (2019). Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment. Applied Energy, 233–234, 1003–1014. https://doi.org/10.1016/j.apenergy.2018.10.042

Ogbonnaya, C., Abeykoon, C., Damo, U. M., & Turan, A. (2019). The current and emerging renewable energy technologies for power generation in Nigeria: A review. Thermal Science and Engineering Progress, 13, 100390. https://doi.

org/10.1016/j.tsep.2019.100390

Pali, B. S., & Vadhera, S. (2018). A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas. Renewable Energy, 127, 802–810. https://doi.org/10.1016/j.renene.2018.05.028

Qolipour, M., Mostafaeipour, A., & Tousi, O. M. (2017). Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study. Renewable and Sustainable Energy Reviews, 78, 113–123. https://doi.org/10.1016/j.rser.2017.04.088

Reis, J. S. da M., Espuny, M., Nunhes, T. V., Sampaio, N. A. de S., Isaksson, R., Campos, F. C. de, & Oliveira, O. J. de. (2021). Striding towards Sustainability: A Framework to Overcome Challenges and Explore Opportunities through Industry 4.0. Sustainability, 13(9), 5232. https://doi.org/10.3390/su13095232

Ren, Z., Verma, A. S., Li, Y., Teuwen, J. J. E., & Jiang, Z. (2021). Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 144, 110886. https://doi.org/10.1016/j.rser.2021.110886

Sales, J. P. de, Reis, J. S. da M., Barros, J. G. M. de, Fonseca, B. B. da, Junior, A. H. de A., Almeida, M. da G. D. de, Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. de S. (2022). Quality Management in The Contours of Continuous Product Improvement. International Journal for Quality Research, 16(3). https://doi.org/10.24874/IJQR16.03-02

Shoaib, M., Siddiqui, I., Rehman, S., Khan, S., & Alhems, L. M. (2019). Assessment of wind energy potential using wind energy conversion system. Journal of Cleaner Production, 216, 346–360. https://doi.org/10.1016/j.jclepro.2019.01.128

Silva, H. de O. G. da, Costa, M. C. M., Aguilera, M. V. C., Almeida, M. da G. D. de, Fonseca, B. B. da, Reis, J. S. da M., Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. de S. (2021). Improved vehicle painting process using Statistical Process Control Tools in an Automobile industry. International Journal for Quality Research, 15(4), 1251–1268. https://doi.org/10.24874/IJQR15.04-14

Son, J.-Y., & Ma, K. (2017). Wind Energy Systems. Proceedings of the IEEE, 105(11), 2116–2131. https://doi.org/10.1109/JPROC.2017.2695485

State Secretariat Of Infrastructure Of The State Of Ceará. (2019). Wind and Solar Atlas of the State of Ceara. In SEINFRA.

Wang, X., Zeng, X., Yang, X., & Li, J. (2018). Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Applied Energy, 209, 127–139. https://doi.org/10.1016/j.apenergy.2017.10.107

Wu, X., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T., Adcock, T., Jiang, Z., Gao, Z., Lin, Z., Borthwick, A., & Liao, S. (2019). Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 104, 379–393. https://doi.org/10.1016/j.rser.2019.01.012

Yang, B., Yu, T., Shu, H., Dong, J., & Jiang, L. (2018). Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Applied Energy, 210, 711–723. https://doi.org/10.1016/j. apenergy.2017.08.027

Downloads

Publicado

2023-12-09

Edição

Seção

Artigos